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SOME GENERAL PROBABILISTIC ESTIMATIONS FOR THE RATE OF 2
CONVERGENCE IN OPERATOR SEMIGROUP REPRESENTATIONS -

! W

l -

DIETMAR PFEIFER* .
Center for Stochastic Processes, UNC at Chapel Hill, USA, and e
Institut fur Statistik und Wirtschaftsmathematik, Technical -
University, Aachen, W. Germany Thns A .
Abstract JStarting from well-known estimations for the rate >

of convergence in Hille's, Phillips' and Widder's representa- o
tion formulas for operator semigroups we showjthat by a suit- =
able probabilistic approach, these results are easily reob- ‘ﬂ
tained, and can immediately be generalized to arbitrary (pro- -j
babilistic) rep esentatlon formulas. Some examples are also _____ -]
considered. _ y ;r,L‘ : /Vf,,; ,n—n TR //,M mﬁ e ! :
ﬂf{lw)h/' ‘T (s "rrxd«/’/\h\ ©) /\1/7‘ /La 4 lie Vn-‘ . '. 3 / -:4
INTRODUCTION C— -]

Ve
Saniaad (8 1

As has been worked out in the recent papers [6],[7], probability
theory has shown up to be a powerful toeol within representation

theory of semigroups of linear operators, especially in connection

el

with approximation - theoretic questions in this area. In fact,

all relevant estimations for direct approximation theorems and

T
b A

many estimations involving various kinds of moduli of continuity
are covered by this approach. However, in [7] some questions con- R
cerning certain indirect approximation theorems remained open

which we shall answer in this paper. Especially, we shall show

that Ditzian's {1],(2],[3] estimations for the rate of convergence 1

for the most important semigroup representations of Hille, ~

Phillips and Widder (see [4]) are not only easily reobtained by
the probabilistic approach, but also generalize immediately to

*Research supported in part by US AFOSR Contract No. F49620 82 C
0009.
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arbitrary semigroup representations of probabilistic type (see [6]).
[hroughout the paper, we shall consider a strongly continuous one-

parameter operator semigroup {T(t); t 2 0} of bounded endomorphisms

on a Banach space X with norm as in [7]. As usual, A will de-

note the infinitesimal generator of the semigroup, and

R(*) = (AL - A)"l stands for the resolvent of the semigroup which
always exists for sufficiently large A. Further, let wb(ﬁ,f) de-
note the rectified modulus of continuity in the interval [0,b]

given by
2 (8,£) = sup{{|T()f -T(s)f|l; O<s,t<b, |s-t] <&} ¢8)

for b, >0, £« X. In 1960, Hsu [5] gave a first estimation for
the rate of convergence in Hille's exponential formula in terms of

the rectified modulus of continuity; he proved

1 1
lexp(a O € T[] < WPn”, ) 4k £]ln (2)

1
for £« X, h>0 (such that t+-h/3< b) where K is independent of f,h

and t, and Ah is the difference operator given by

A =%(T(h)-1), h>0, f<X. (3)

hf
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1
In 1969 Ditzian [1] proved that in formula (2), the term h/3 could

Pt

be replaced by any power n* with O<):<1b, and that x could not be

PPV SRS

extended to values larger than s (For an extension of this re-
lation to arbitrary semigroup representations of probabilistic

tvpe, see [7]). He also proved [2] that for x= ', a similar es-
timation holds true, however with a larger factor for the modulus;

he obtained

(BB VA W ST

1
lexp(a O =Tt ]| < W 2,6) %)

for t<“b-5 (0<S8<b being fixed), and h small enough, where

again L is independent of h and t. 1In [3], he developed analogous j

estimations for Phillips' and Widder's representation formulas; he
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showed that

b, -Y%
Kw (n ,E) feX
H{%R(%)}“”f -T(t)f|| < _Y, b, <Y
Ln *w (n” 2,Af), £ e D(A) (5

1
kP02 5y £ e X

|| exp(~eAL + A2 RO E ~ T(E)E|| < (6)

1 ]
LA~ /Zwb(x‘ /Z,Af), f ¢ D(A)

for sufficiently large n and A\, where again t<b-§, and K and L

are independent of n, A, and t. Here D(A) denotes the domain of
the infinitesimal generator A.

It is no surprise that the right hand side of (4),(5) and (6)
ﬁi; are of the same type; this is essentially due to the fact that the
‘ estimations involved here are closely related to the variances of
the underlying random variables when the probabilistic forms of

the above representations are considered (see [6] and [7]); this

will be worked out in more detail in the following chapter.
The basic tool here will be the concept of the probability

*
generating function Wx of a suitable random variable X, given by

¥ () = E(tX), t>0 and w;(c) - By, ceRr (7)

where E(+) means expectation.

MAIN RESULTS

The basic estimation from which all relevant results can immedi-

ately be derived is given in the following statement.

f;“ THEOREM 1. Let O0<t<b and assume that X is a random variable
i ' which is concentrated on the interval [0,b] with expectation
E(X) =t. Then the variance 02==02(X) is finite, and for all €>0,

we have

IEIT(X) Jf - T(O)E] < (l+-§)wb(e,f), £eX (8)




HE[T(X) 1 - T(t)f||

*

A S o S S

Tl T L TF S T

< J(l+§-)wb(e,Af), £eD(A). 9)

Proof. ©Under the conditions above, the moment-generating function

?X exists everywhere, hence E[T(X)] is well-defined (see [6]).

Further,

HE[TCOTE-T(e)F! < [IIT(X)E -T(e)E]|dP < fwb(|x-c$,f)dp

X

< f(l + L—Eﬁl)wb(a,f)dP < (l-#%)wb(e,f)

(10)

L ot ad T Y

for f - X since by the Jensen inequality (see [7}, Theorem 2.1),

Vo2
{E(:X— ti):  <E((X- t)2)='32. Here P denotes the underlying pro-
M bability measure. This proves relation (8).
Now assume £ : D(A). Then
) 1 (11)
{ T(X)f-T()f = (X-)T(t)Af+ (X~ t)[[T(t+u(X - t)) - T(t) JAf du,
0
hence
- :
S HEITO M -T £ = [JEQX-€) [[T(t+u(X - t)) - T(t)]Af du) ||
.- . 0
-~ ’ - |
: < BC%- o] (14X e, a0) < 01+ D’ (e a0 (12)
- _
. which proves relation (9).

Since probabilistic representation theorems for operator semi-
it: groups are closely related to the law of large numbers (see [6]),

it is interesting to see what kind of estimations can be obtained

;l from the Theorem 1 in this case. For this purpose, X has to be
- _lan
i 1 i ==
replaced by the arithmetic mean Xn nstle where xl,..., Xn are

independent copies of X. Then for the variance, © (Xn)=(32/n,

hence the following result holds.

COROLLARY 1. Under the conditions of Theorem 1, and if

T
et .
LI P R T ‘

Xl""’ Xn are independent copies of X, we have

- _1
L' llE[T(Xn)]f—T(t)fH < (L+0)w’(n /2,f), feX (13)
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1 1
||E[T(in)]f -T(e)E|| £ n” /2:)(1+0)wb(n- /Z,Af), f e D(A). (14)

A

Proof. Obvious by letting €=n in Theorem 1.

It is no problem to extend the above results also to more
general situations, i.e. arbitrary distributions for the under-

lying random variables. One such result is the following.

THEQREM 2. Let X be a non-negative random variable whose moment-
*
gathering function WX exists for some positive argument. Then for

sufficiently large n, E[T(i;)] exists, and

1
Ko (n~ /Z,f), feX (15)

IA

|]E[T(§n>]f-r(t)f||

IA

rd - b A
HE[T(Xn)]f—T(t)fH Ln “w (n '*,Af), feD(A), (16)

where t=E(X), t<b-4 (0<38<b being fixed), n being sufficient-

ly large, and K and L are independent of n and t.
Proof. Define

{i, if Is(-—t|£5

n n

Y = ‘-
o 1 t, otherwise.

Then

_ Hr(in)f-'r(t)fll dp = [|{T(Y )£ - T(t)f]|dP
X -] <6 n

1
< fwb(an-tl,f)dP < (l+c)wb(n_ /Z,f)

(where 02 again denotes the variance of X), and

_f o tEe-moeflar < g
X -ti>s
ot

*
for some constant K > 0 (independent of n and t) by the prvof of
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Theorem 5.1 in [7]. Thus

— -1 -
BTG 1E- T ] = Araul@ 2,6 +k%e P g

I

1
< %2(n” 2, 6)

for some suitable constant K> 0. This proves (15). For the proof

of (16), observe that ]
;]E[T(xn)]f-r(c)fn < E([]T(Xn)f-T(Yn)fH) + ... -

Lo+ ”E{T(Yn)]f -T(e)f||

[7a

f IT(X )£ - T(e)E[[dP + E(|Xn-Yn|)||T(t) Afl] + ...

X -t]>8 s
n

P g P

1 1
o+ /20(1 +J)ub(n- /Z,Af)

CBM )+ BRSO VROE, -6 oL lad] + ...

A

i {
o+ 2oL+ o) @ 2, af)

A

K53 Ml + o™ e ag)) + ..

1 1
..+ 0 /20(1 +o)wb(n- /Z,Af)

. x  kk
by (12) and Holder's inequality for suitable constants L ,L >0,

(R U g

which gives the desired result.
An immediate consequence of Theorem 2 to general probabilis-
tic representation theorems for operator semigroups is given in

the following statement.

COROLLARY 2. Let Nbe a non-negative integer-valued random variable *1
and Y be a non-negative real random variable such that ‘PN(Gl) <o f‘

*
for some cSl> 1 and ‘PY(GZ) <o for some 62> 0. Then the expecta- ;

tions E(N) =3 and E(Y) =y (say) exist, and for sufficiently large

n, S = {‘*’V(E[T(E-)])}n exists as a bounded linear operator. Then
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if t=Zy<b-8 (0<38<b) being fixed), there exist constants K

and L which are independent of n and t such that

1
kP(n” 2 £), feX (17)

EaN

||Snf-’r(t)fll

IA

Yo b, =Y,
Hsnf-T(t)fH Ln 2w (n "?,Af), feD(A). (18)

Proof. Obvious from Theorem 4.4 and 5.2 in [7].

It is interesting to notice that Ditzian's estimations (5)
and (6) (for intager values of A) are covered by Corollarv 2, as
well as a discrete version of (4) with h=1/n; here additionally
a corresponding estimation for f € D(A) is at once available (see
[6] and [7]). Moreover, it is also possible to obtain the general
estimations (4) and (6) by an application of the above Theorem to
the situation under Theorem 4.2 in [7]), using Poisson processes
for Hille's and Phillips' formulas. The missing estimation for

Hille's formula then is
Yo b, Vs
||exp(A, t)f - T(t)f]| < Lh’?w (h’2,Af), f£eD(A) (19)
A

for t<b~-8 (0<8<b being fixed), and h small enough.

It should be pointed out finally that Corollary 1 can immedi-
ately be applied to Kendall's representation formula using bi-
nomial distributions which has an interesting application to

Bernstein polvnomials. Namely, we have (20)

1
1 n (HEA-D)® (™ 2, 6), £ < X
{(- OT+ET()} £-T(O)E] <

- b, -t/
n AVe(l-t) (I+/e(l-t)w (n '3 Af),
f e D(A)

for 0st<1, and b=1. Applying this to the semigroup of transla-
tions as in {7], chapter 7, and letting w denote the modulus of

continuity in the interval [0,l], we obtain for the Bernstein

polynomials
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o n k, k n-k
Bn(g,x) = E(k)g(g)x (1-x) , 0<x<1l, n21l, geC[0,1]:

k=0
{ _1/ (21)
(1+v/x(1-x)w(n” %,g), g=cC[0,1]
B (2% -g(0)| = |
n x(1-x) -
‘/E—n—(l+\lx(l—x))w(n 2g), gec[o,1].

It should be pointed out finally that the arguments above can
also immediately be applied to more general forms of operator semi-
group representations, for instance the product representation

theorems developed in [6].
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